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ABSTRACT

We review the q-deformed spin network approach to Topological Quantum Field Theory and apply these methods
to produce unitary representations of the braid groups that are dense in the unitary groups.
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1. INTRODUCTION

This paper describes the background for topological quantum computing in terms of Temperely – Lieb Recoupling
Theory. This is a recoupling theory that generalizes standard angular momentum recoupling theory, generalizes
the Penrose theory of spin networks and is inherently topological. Temperely – Lieb Recoupling Theory is based
on the bracket polynomial model for the Jones polynomial. It is built in terms of diagrammatic combinatorial
topology. The same structure can be explained in terms of the SU(2)q quantum group, and has relationships with
functional integration and Witten’s approach to topological quantum field theory. Nevertheless, the approach
given here will be unrelentingly elementary. Elementary, does not necessarily mean simple. In this case an
architecture is built from simple beginnings and this archictecture and its recoupling language can be applied
to many things including: colored Jones polynomials, Witten–Reshetikhin–Turaev invariants of three manifolds,
topological quantum field theory and quantum computing.

In quantum computing, the application is most interesting because the recoupling theory yields represen-
tations of the Artin Braid group into unitary groups U(n). These represententations are dense in the unitary
group, and can be used to model quantum computation universally in terms of representations of the braid
group. Hence the term: topological quantum computation.

In this paper, we outline the basics of the Temperely – Lieb Recoupling Theory, and show explicitly how
unitary representations of the braid group arise from it. We will return to this subject in more detail in
subsequent papers. In particular, we do not describe the context of anyonic models for quantum computation
in this paper. Rather, we concentrate here on showing how naturally unitary representations of the braid group
arise in the context of the Temperely – Lieb Theory. For the reader interested in the relevant background in
anyonic topological quantum computing we recommend the following references {1–5, 10, 11, 13, 14 }.

Here is a very condensed presentation of how unitary representations of the braid group are constructed via
topological quantum field theoretic methods. For simplicity assmue that one has a single (mathematical) particle
with label P that can interact with itself to produce either itself labeled P, or itself with the null label ∗. When
∗ interacts with P the result is always P. When ∗ interacts with ∗ the result is always ∗. One considers process
spaces where a row of particles labeled P can successively interact, subject to the restriction that the end result
is P. For example the space V [(ab)c] denotes the space of interactions of three particles labeled P. The particles
are placed in the positions a, b, c. Thus we begin with (PP )P. In a typical sequence of interactions, the first two
P ’s interact to produce a ∗, and the ∗ interacts with P to produce P.

(PP )P −→ (∗)P −→ P.
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Step #1:
from the 2x2 matrix
to the 4x4 matrix :

U
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cU = ( )U0

01

Step #2:
application of on the
NMR product operator :

cU
I1x

cU = ( )U0

01
cU I 1x

†

2
1 ( )1

0

0

1 ( )U0

01
†

= 2
1 ( )0

0 U

U

†

Step #3:
measurement
of and :I I1x 1y

I 1x ( )0

0 U

U

†

{ }tr = 2
1 / tr U( { })

I 1y ( )0

0 U

U

†

{ }tr 0= 2
1 tr U( { })

2
1

2
1

I
S cU2

-1
cU1 cU2

-1
cU1 cU2

-1
cU1

I
S cU2

-1
cU1 cU2

-1
cU1

I
S cU1 cU1 cU1

I

S

z

-1

z

-2

2
3J

I
S cU1

means

I

S

z

1

y

4 3+

y

-4

2
3J

y

-3

z

2I
S cU2

-1

means

I

S

z

-1

y

4

z

-2

y

-4

2
3J

I
S cU2

means

I

S

z

1

y

3

2
3J

y

-3

z

2I
S cU1

-1

means

Jones Polynomial
“Trefoil":

Jones Polynomial
“Figure-Eight":

Jones Polynomial
“Borromean rings":
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A is defined as a closed, non-self-intersecting curve
that is embedded in three dimensions.

knot

example: “construction” of the Trefoil knot:

make a
“knot”

fuse the
free ends

make it
“look nice”

start with a rope end up with a Trefoil

J. W. Alexander proved, that any knot can be represented
as a closed braid (polynomial time algorithm)

1 &1 &2
&1
-1 &2

-1

generators of the 3 strand braid group:

radie +%$

It is well known in knot theory, how to obtain the unitary matrix representation
of all generators of a given braid goup (see “Temperley-Lieb algebra” and “path
model representation”). The unitary matrices U and U , corresponding to the

generators and of the 3 strand braid group are shown on the left, where the

variable “ ” is related to the variable “ ” of the Jones polynomial by: .

The unitary matrix representations of and are given by U and U .

The knot or link that was expressed as a product of braid group generators can
therefore also be expressed as a product of the corresponding unitary matrices.

1 2

1 2& &
+

& &
A A

-1 - - -1 1 1

1 2 1 2

Instead of applying the unitary matrix we apply it’s controlled variant .
This matrix is especially suited for NMR quantum computers [4] and other
thermal state expectation value quantum computers: you only have to apply

to the NMR product operator and measure and in order to obtain
the trace of the original matrix .

U, cU

cU I I I
U

1x 1x 1y

.

Independent of the dimension of matrix you only need ONE extra qubit for the
implementation of as compared to the implementation of itself.

U
cU U

The measurement of I I1x 1yand can be accomplished in one single-scan experiment.

All knots and links can be expressed as a product of braid group generators (see
above). Hence the corresponding NMR pulse sequence can also be expressed as
a sequence of NMR pulse sequence blocks, where each block corresponds to the
controlled unitary matrix of one braid group generator.cU .

This modular approach allows for an easy optimization of the NMR pulse
sequences: only a small and limited number of pulse sequence blocks have to
be optimized. .

Comparison of experimental results, theoretical predictions, and simulated ex-
periments, where realisitic inperfections like relaxation, B field inhomogeneity,
and finite length of the pulses are included.

1

.

The Jones Polynomials can be reconstructed out of the NMR experiments by:

For each data point, four single-scan NMR experiments have been performed:
measurement of I I I I1x 1y 1x 1y, measurement of , reference for , and reference for .
If necessary each data point can also be obtained in one single-scan experiment
by measuring amplitude and phase in a referenced setting. .

V (A)=( A ) ( { } A [( A A ) 2])- +tr U - - -
3 ( ) ( ) 2 2 2- -w L I L

L

where: ( ) is the writhe of the knot or link
{ } is determined by the NMR experiments

( ) is the sum of exponents in the braid word
corresponding to the knot or link

w L L
tr U
I L

L

A A A+ -
-4 -12 -16( )

- -A A
2 -2( )



Quantum Mechanics in a Nutshell

1. (measurement free) Physical processes  
are modeled by unitary transformations

 applied to the state vector: |S> -----> U|S> 

0.  A state of a physical system 
corresponds to a unit vector |S> in a 

complex vector space.

2. If |S> = z1|e1> + z2|e2> + ... + zn|en>
in a measurement basis {e1,e2,...,en}, then
measurement of |S> yields |ei> with 

probability |zi|^2.

U



Qubit 

a|0> + b|1>

|0> |1>

measure

prob = |a|^2 prob = |b|^2

A qubit is the quantum version of
a classical bit of information.



Quantum Gates
are unitary transformations 

enlisted for the purpose of computation.

1 0 0 0

0 0 0

0 0 0

0 0 0

1

1

1
CNOT =

CNOT|00> = |00>
CNOT|01> = |01>
CNOT|10> = |11>
CNOT|11> = |10>



|0> |1>
|0>

|0> |1>
|0>

|0>

|1>
-|1>

|0> |1>

|0>

|0>|1>

-|1>

Mach-Zender Interferometer

H = [     ]1 1

1 -1
/Sqrt(2) M = [     ]1

1

0

0

HMH = [     ]1 0

0 -1

Hadamard
Matrix



U

|0>

|phi>

Measure

Hadamard Test

|0>

|0> occurs with probability
1/2 + Re[<phi|U|phi>]/2

Quantum Computation of the Trace
of a Unitary Matrix

HH



Universal Gates

S =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





Compositions of solutions of the (Braiding) Yang-Baxter Equation with the
swap gate S are called solutions to the algebraic Yang-Baxter equation. Thus
the diagonal matrix P is a solution to the algebraic Yang-Baxter equation.

2.1 Universal Gates

A two-qubit gate G is a unitary linear mapping G : V ⊗ V −→ V where V is
a two complex dimensional vector space. We say that the gate G is universal
for quantum computation (or just universal) if G together with local unitary
transformations (unitary transformations from V to V ) generates all unitary
transformations of the complex vector space of dimension 2n to itself. It is
well-known [44] that CNOT is a universal gate.

A gate G, as above, is said to be entangling if there is a vector

|αβ〉 = |α〉 ⊗ |β〉 ∈ V ⊗ V

such that G|αβ〉 is not decomposable as a tensor product of two qubits.
Under these circumstances, one says that G|αβ〉 is entangled.

In [6], the Brylinskis give a general criterion of G to be universal. They prove
that a two-qubit gate G is universal if and only if it is entangling.

The reader will also be interested in the paper [5] and the url

http : //www.physics.uq.edu.au/gqc/,

wherein the practical algorithm in [5], for expressing entangling gates in terms
of CNOT and local transformations, is implemented online.
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! Exponential speed-up: entanglement ! quantum

parallelism: compute all values of f .x/ for x D
010011000:::01 in just one run (global properties)

! Discrete Universal set of quantum gates: any unitary

operator can be approximated (with arbitrary precision in

E.U;V / " maxj i jjU # V j ijj) by products of H , S , CNOT

and T

! Explicit gate realization in the basis fj0i; j1ig:

H D 1p
2

!
1 1

1 #1

"
; S D

!
1 0

0 i

"
; T D

!
1 0

0 ei!=4

"

L. Georgiev [INRNE-Sofia] Theory of Elementary Particles Support: EUCLID, NCSR-BG

Local Unitaries are generated (up to density) by
a small number of gates.



   

Figure 1 - A knot diagram.

I

II

III

Figure 2 - The Reidemeister Moves.

That is, two knots are regarded as equivalent if one embedding can be obtained
from the other through a continuous family of embeddings of circles in three-
space. A link is an embedding of a disjoiint collection of circles, taken up to
ambient isotopy. Figure 1 illustrates a diagramm for a knot. The diagram is
regarded both as a schematic picture of the knot, and as a plane graph with
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extra structure at the nodes (indicating how the curve of the knot passes over
or under itself by standard pictorial conventions).

1 2

3 1
-1

=

=

=

s

s s

s

Braid Generators

1s1
-1s = 1

1s 2s 1s 2s 1s 2s=

1s 3s 1s3s=

Figure 3 - Braid Generators.

Ambient isotopy is mathematically the same as the equivalence relation
generated on diagrams by the Reidemeister moves. These moves are illustrated
in Figure 2. Each move is performed on a local part of the diagram that is
topologically identical to the part of the diagram illustrated in this figure
(these figures are representative examples of the types of Reidemeister moves)
without changing the rest of the diagram. The Reidemeister moves are useful in
doing combinatorial topology with knots and links, notaby in working out the
behaviour of knot invariants. A knot invariant is a function defined from knots
and links to some other mathematical object (such as groups or polynomials
or numbers) such that equivalent diagrams are mapped to equivalent objects
(isomorphic groups, identical polynomials, identical numbers).
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Hopf Link

Figure Eight Knot

Trefoil Knot

Figure 4 - Closing Braids to form knots and links.

b CL(b)
Figure 5 - Borromean Rings as a Braid Closure.
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1 2

3 1
-1

=

=

=

s

s s

s

Braid Generators

1
s

1
-1s = 1

1
s 2s

1
s 2s

1
s 2s=

1
s 3

s 1
s

3
s=

Figure 2 - Braid Generators and Relations

The problem of finding solutions to the Yang-Baxter equation that are
unitary turns out to be surprisingly difficult. Dye [12] has classified all such
matrices of size 4 × 4. A rough summary of her classification is that all
4× 4 unitary solutions to the Yang-Baxter equation are similar to one of the
following types of matrix:

R =





1/
√

2 0 0 1/
√

2
0 1/

√
2 −1/

√
2 0

0 1/
√

2 1/
√

2 0
−1/

√
2 0 0 1/

√
2





9

R′ =





a 0 0 0
0 0 b 0
0 c 0 0
0 0 0 d





R′′ =





0 0 0 a
0 b 0 0
0 0 c 0
d 0 0 0





where a,b,c,d are unit complex numbers.
For the purpose of quantum computing, one should regard each matrix

as acting on the stamdard basis {|00〉, |01〉, |10〉, |11〉} of H = V ⊗ V, where
V is a two-dimensional complex vector space. Then, for example we have

R|00〉 = (1/
√

2)|00〉 − (1/
√

2)|11〉,

R|01〉 = (1/
√

2)|01〉 + (1/
√

2)|10〉,
R|10〉 = −(1/

√
2)|01〉 + (1/

√
2)|10〉,

R|11〉 = (1/
√

2)|00〉 + (1/
√

2)|11〉.
The reader should note that R is the familiar change-of-basis matrix from
the standard basis to the Bell basis of entangled states.

In the case of R′, we have

R′|00〉 = a|00〉, R′|01〉 = c|10〉,

R′|10〉 = b|01〉, R′|11〉 = d|11〉.
Note that R′ can be regarded as a diagonal phase gate P , composed with a
swap gate S.

P =





a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d





10

D =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





QDQ−1 = QDQ =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 = CNOT

This completes the proof of the Theorem. !

Remark. We thank Martin Roetteles [46] for pointing out the specific fac-
torization of CNOT used in this proof.

Theorem1. The matrix solutions R′ and R′′ to the Yang-Baxter equation,
described above, are universal gates exactly when ad−bc "= 0 for their internal
parameters a, b, c, d. In particular, let R0 denote the solution R′ (above) to
the Yang-Baxter equation with a = b = c = 1, d = −1.

R0 =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1





Then R0 is a universal gate.

Proof. The first part follows at once from the Brylinski Theorem. In fact,
letting H be the Hadamard matrix as before, and

σ =

(
1/
√

2 i/
√

2
i/
√

2 1/
√

2

)

, λ =

(
1/
√

2 1/
√

2
i/
√

2 −i/
√

2

)

µ =

(
(1 − i)/2 (1 + i)/2
(1 − i)/2 (−1 − i)/2

)

.

Then
CNOT = (λ ⊗ µ)(R0(I ⊗ σ)R0)(H ⊗ H).

This gives an explicit expression for CNOT in terms of R0 and local unitary
transformations (for which we thank Ben Reichardt in response to an early
version of the present paper). !

13

R′ =





a 0 0 0
0 0 b 0
0 c 0 0
0 0 0 d





R′′ =





0 0 0 a
0 b 0 0
0 0 c 0
d 0 0 0





where a,b,c,d are unit complex numbers.
For the purpose of quantum computing, one should regard each matrix

as acting on the stamdard basis {|00〉, |01〉, |10〉, |11〉} of H = V ⊗ V, where
V is a two-dimensional complex vector space. Then, for example we have

R|00〉 = (1/
√

2)|00〉 − (1/
√

2)|11〉,

R|01〉 = (1/
√

2)|01〉 + (1/
√

2)|10〉,
R|10〉 = −(1/

√
2)|01〉 + (1/

√
2)|10〉,

R|11〉 = (1/
√

2)|00〉 + (1/
√

2)|11〉.
The reader should note that R is the familiar change-of-basis matrix from
the standard basis to the Bell basis of entangled states.

In the case of R′, we have

R′|00〉 = a|00〉, R′|01〉 = c|10〉,

R′|10〉 = b|01〉, R′|11〉 = d|11〉.
Note that R′ can be regarded as a diagonal phase gate P , composed with a
swap gate S.

P =





a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d





10

Representative Examples of
Unitary Solutions to the 

Yang-Baxter Equation that are Universal Gates.

Bell Basis Change Matrix

Swap Gate
 with Phase

R + R* = Sqrt[2]I
Corresponding Link Invariant 
is Special Case of Homfly Poly.

(virtual crossing
corresponds to 

swap gate.)

See paper by Heather Dye for classification of 
2 x2 Yang-Baxter gates.



Quantum Hall Effect



A quasi-particle theory  connected 
with Chern-Simons Theory  explains 
the FQHE on the basis of  “anyons”: 

particles that have non-trivial (not +1 
or -1) phase change when they 
exchange places in the plane.
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Applications of conformal field theory to the theory of fractional quantum Hall systems are 

discussed. In particular, Laughlin's wave function and its cousins are interpreted as conformal 

blocks in certain rational conformal field theories. Using this point of view a hamiitonian is 

constructed for electrons for which the ground state is known exactly and whose quasihole 

excitations have nonabelian statistics; we term these objects "nonabelions". It is argued that 

universality classes of fractional quantum Hall systems can be characterized by the quantum 

numbers and statistics of their excitations. The relation between the order parameter in the 

fractional quantum Hall effect and the chiral algebra in rational conformal field theory is 

stressed, and new order parameters for several states are given. 

I. Introduction 

The past few years have seen a great deal of interest in two-dimensional many 

particle and (2 + 1)-dimensional field-theoretic systems from several motivations. 

These include the fractional quantum Hall effect, high-temperature superconduc- 

tivity and the anyon gas, conformal field theory in 1 + 1 dimensions and its relation 

to 2 + 1 Chern-Simons-Wit ten (CSW) theories, knot invariants, exactly soluble 

statistical mechanical models in 1 + 1 dimensions, and general investigations of 

particle statistics in two space dimensions [1-6]. A common theme in most of these 

investigations is the richness of representations of the braid group, ~ , ,  which 

replaces the permutation group as the group describing particle statistics in two 

dimensions. In particular, in the fractional quantum Hall effect (FQHE) it was 

suggested early on that the fractionally charged quasiparticle excitations obey 

fractional statistics [7, 8], that is adiabatic interchange of two identical quasiparti- 

cles produces a phase not equal to + 1. In other words, in a suitable gauge, the 

wave functions transform under interchange of quasiparticles as a one-dimen- 

sional, i.e. abelian representation of the braid group, in a way not possible in 

0551)-3213/91/$03.50 +cj 1991 - Elsevier Science Publishers B.V. (North.l.lolhmd) 
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to the braiding and fusing properties in the interior of the disc. This leads us to 

conjecture that the same holds in the FQHE: the edge states are described 

physically by the same RCFT that describes the bulk mathematically. However, we 

will not elaborate further on this point in this paper. 

In summary, we have made a number of conjectures which unify many aspects of 

the FQHE and suggest a classification of the kinematically allowed states through 

the corresponding RCFTs. In the following sections we will attempt to clarify and 

justify these ideas by showing that they are true in a number of important known 

FGHE systems, and that examples of nonabelions can be constructed. 

3. Electron wave functions as conformal blocks: Laughlin states 

and the hierarchy 

Let us return to the Laughlin state in the disc geometry: 

, 2] 
~l~.gi, l i , , (z l ,--- ,  zN) = r l  ( z , -  zs) aexp[ - ~ Y:lz, I , 

i < j  
(3.1) 

where q is an odd integer [3]. In the thermodynamic limit this state IOL; N )  

describes a fluid ground state with a uniform number density P0 - v/2z: = 1/2zrq 
inside a radius of order 2~-N. The GL description of this limit for a normalized 

fluid state [t~ ) of slowly varying density involves a gauge field 

i ~ ( z ) ~  f z - z '  d z' (3.2) 

In the GL description [4] this gauge field couples to the order parameter (which 

has charge q; we set the charge of the electron to 1 from now on) and also enters 

with a Chern-Simons term 

q 

4rr f z C d ~  (3.3) 

in the action. If we are interested primarily in statistics of excitations we may 

expect such topological terms in the action to play a dominant role - since they 

dominate all other terms at long distances and low energies. On the other hand, it 

is now well known that CSW theory (i.e. (2 + 1)-dimensional gauge theory with 

only a CS term in the action) for an abelian gauge field is closely connected to the 

(1 + 1)-dimensional conformal field theory known as the "rational torus" [1,5]. 

The rational torus theory is characterized by a "level" N and is denoted by 

U(1)N*. The level N can be determined in terms of q by comparing the abelian 

* See ref. [ l ]  sect. lO for an explanation of the notation, 
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Figure 16 - A More Complex Braiding Operator

A key point in the application of TQFT to quantum information theory
is contained in the structure illustrated in Figure 16. There we show a more
complex braiding operator, based on the composition of recoupling with the
elementary braiding at a vertex. (This structure is implicit in the Hexagon
identity of Figure 27.) The new braiding operator is a source of unitary rep-
resentations of braid group in situations (which exist mathematically) where
the recoupling transformations are themselves unitary. This kind of pattern is
utilized in the work of Freedman and collaborators [14, 15, 16, 17, 18] and in
the case of classical angular momentum formalism has been dubbed a “spin-
network quantum simlator” by Rasetti and collaborators [43]. In the next
section we show how certain natural deformations [26] of Penrose spin net-
works [46] can be used to produce these unitary representations of the Artin
braid group and the corresponding models for anyonic topological quantum
computation.

6 Spin Networks and Temperley-Lieb Recou-
pling Theory

In this section we discuss a combinatorial construction for spin networks that
generalizes the original construction of Roger Penrose. The result of this gen-
eralization is a structure that satisfies all the properties of a graphical TQFT

44

Non-Local Braiding is Induced 
via Recoupling



Process Spaces Can be Abitrarily Large.
With a coherent recoupling theory, all 

transformations are in the 
representation of one braid group.



Fibonacci Model
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state and a blank space for the unmarked state. Then one has two modes of
interaction of a box with itself:

1. Adjacency:

and

2. Nesting: .

With this convention we take the adjacency interaction to yield a single box,
and the nesting interaction to produce nothing:

=

=

We take the notational opportunity to denote nothing by an asterisk (*). The
syntatical rules for operating the asterisk are Thus the asterisk is a stand-in
for no mark at all and it can be erased or placed wherever it is convenient to
do so. Thus

= ∗.

We shall make a recoupling theory based on this particle, but it is worth
noting some of its purely combinatorial properties first. The arithmetic of
combining boxes (standing for acts of distinction) according to these rules
has been studied and formalized in [52] and correlated with Boolean algebra
and classical logic. Here within and next to are ways to refer to the two
sides delineated by the given distinction. From this point of view, there are
two modes of relationship (adjacency and nesting) that arise at once in the
presence of a distinction.

*

P P P P

P

Figure 25 - Fibonacci Particle Interaction
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One particle P.
One neutral state *

PP ----> P  or
PP ----> *



P P P P PP

*
P

P
P

*
Specific Processes 

Correspond to Basis 
Vectors in the Process 

Space.

This “Fibonacci Particle” P 
interacts with itself to 

produce either itself or a 
neutral particle

*.  



P P P P P

P

*
P

*

|* P *>  in  V PPP
P

Interaction Sequences of P and * do not admit two *’s in 
a row.

There are Fibonacci numbers of such 
sequences.



Fibonacci Tree:

Admissible Sequences
are the Paths from the Root
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For this specialization we see that the matrix F becomes

F =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 (−Θ2/∆2)∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 −1/∆

)

This version of F has square equal to the identity independent of the value of
Θ, so long as ∆2 = ∆ + 1.

The Final Adjustment. Our last version of F suffers from a lack of symme-
try. It is not a symmetric matrix, and hence not unitary. A final adjustment
of the model gives this desired symmetry. Consider the result of replacing each
trivalent vertex (with three 2-projector strands) by a multiple by a given quan-
tity α. Since the Θ has two vertices, it will be multiplied by α2. Similarly, the
tetradhedron T will be multiplied by α4. The ∆ and the δ will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after such an adjustment is made, becomes

(
1/∆ ∆/α2Θ

α2Θ/∆2 −1/∆

)

For symmetry we require

∆/(α2Θ) = α2Θ/∆2.

We take
α2 =

√
∆3/Θ.

With this choice of α we have

∆/(α2Θ) = ∆Θ/(Θ
√

∆3) = 1/
√

∆.

Hence the new symmetric F is given by the equation

F =

(
1/∆ 1/

√
∆

1/
√

∆ −1/∆

)

=

(
τ

√
τ√

τ −τ

)

where ∆ is the golden ratio and τ = 1/∆. This gives the Fibonacci model.
Using Figures 37 and 38, we have that the local braiding matrix for the model
is given by the formula below with A = e3πi/5.

R =

(
−A4 0

0 A8

)

=

(
e4πi/5 0

0 −e2πi/5

)

.

The simplest example of a braid group representation arising from this
theory is the representation of the three strand braid group generated by S1 =
R and S2 = FRF (Remember that F = F T = F−1.). The matrices S1 and S2

are both unitary, and they generate a dense subset of the unitary group U(2),
supplying the first part of the transformations needed for quantum computing.
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Notice that it follows from the symmetry of the diagrammatic recoupling for-
mulas of Figure 36 that the square of the recoupling matrix F is equal to the
identity. That is,

(
1 0
0 1

)

= F 2 =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

) (
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)

=

(
1/∆2 + 1/∆ 1/Θ + T∆2/Θ3

Θ/∆3 + T/(∆Θ) 1/∆ + ∆2T 2/Θ4

)

.

Thus we need the relation

1/∆ + 1/∆2 = 1.

This is equivalent to saying that

∆2 = 1 + ∆,

a quadratic equation whose solutions are

∆ = (1±
√

5)/2.

Furthermore, we know that
∆ = δ2 − 1

from Figure 33. Hence
∆2 = ∆ + 1 = δ2.

We shall now specialize to the case where

∆ = δ = (1 +
√

5)/2,

leaving the other cases for the exploration of the reader. We then take

A = e3πi/5

so that
δ = −A2 − A−2 = −2cos(6π/5) = (1 +

√
5)/2.

Note that δ − 1/δ = 1. Thus

Θ = (δ − 1/δ)2δ −∆/δ = δ − 1.

and
T = (δ − 1/δ)2(δ2 − 2)− 2Θ/δ = (δ2 − 2)− 2(δ − 1)/δ

= (δ − 1)(δ − 2)/δ = 3δ − 5.

Note that
T = −Θ2/∆2,

from which it follows immediately that

F 2 = I.

This proves that we can satisfy this model when ∆ = δ = (1 +
√

5)/2.

78

 �  � � �    

For this specialization we see that the matrix F becomes

F =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 (−Θ2/∆2)∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 −1/∆

)

This version of F has square equal to the identity independent of the value of
Θ, so long as ∆2 = ∆ + 1.

The Final Adjustment. Our last version of F suffers from a lack of symme-
try. It is not a symmetric matrix, and hence not unitary. A final adjustment
of the model gives this desired symmetry. Consider the result of replacing each
trivalent vertex (with three 2-projector strands) by a multiple by a given quan-
tity α. Since the Θ has two vertices, it will be multiplied by α2. Similarly, the
tetradhedron T will be multiplied by α4. The ∆ and the δ will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after such an adjustment is made, becomes

(
1/∆ ∆/α2Θ

α2Θ/∆2 −1/∆

)

For symmetry we require

∆/(α2Θ) = α2Θ/∆2.

We take
α2 =

√
∆3/Θ.

With this choice of α we have

∆/(α2Θ) = ∆Θ/(Θ
√

∆3) = 1/
√

∆.

Hence the new symmetric F is given by the equation

F =

(
1/∆ 1/

√
∆

1/
√

∆ −1/∆

)

=

(
τ

√
τ√

τ −τ

)

where ∆ is the golden ratio and τ = 1/∆. This gives the Fibonacci model.
Using Figures 37 and 38, we have that the local braiding matrix for the model
is given by the formula below with A = e3πi/5.

R =

(
−A4 0

0 A8

)

=

(
e4πi/5 0

0 −e2πi/5

)

.

The simplest example of a braid group representation arising from this
theory is the representation of the three strand braid group generated by S1 =
R and S2 = FRF (Remember that F = F T = F−1.). The matrices S1 and S2

are both unitary, and they generate a dense subset of the unitary group U(2),
supplying the first part of the transformations needed for quantum computing.

79

 �  � � �    

For this specialization we see that the matrix F becomes

F =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 (−Θ2/∆2)∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 −1/∆

)

This version of F has square equal to the identity independent of the value of
Θ, so long as ∆2 = ∆ + 1.

The Final Adjustment. Our last version of F suffers from a lack of symme-
try. It is not a symmetric matrix, and hence not unitary. A final adjustment
of the model gives this desired symmetry. Consider the result of replacing each
trivalent vertex (with three 2-projector strands) by a multiple by a given quan-
tity α. Since the Θ has two vertices, it will be multiplied by α2. Similarly, the
tetradhedron T will be multiplied by α4. The ∆ and the δ will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after such an adjustment is made, becomes

(
1/∆ ∆/α2Θ

α2Θ/∆2 −1/∆

)

For symmetry we require

∆/(α2Θ) = α2Θ/∆2.

We take
α2 =

√
∆3/Θ.

With this choice of α we have

∆/(α2Θ) = ∆Θ/(Θ
√

∆3) = 1/
√

∆.

Hence the new symmetric F is given by the equation

F =

(
1/∆ 1/

√
∆

1/
√

∆ −1/∆

)

=

(
τ

√
τ√

τ −τ

)

where ∆ is the golden ratio and τ = 1/∆. This gives the Fibonacci model.
Using Figures 37 and 38, we have that the local braiding matrix for the model
is given by the formula below with A = e3πi/5.

R =

(
−A4 0

0 A8

)

=

(
e4πi/5 0

0 −e2πi/5

)

.

The simplest example of a braid group representation arising from this
theory is the representation of the three strand braid group generated by S1 =
R and S2 = FRF (Remember that F = F T = F−1.). The matrices S1 and S2

are both unitary, and they generate a dense subset of the unitary group U(2),
supplying the first part of the transformations needed for quantum computing.

79

 �  � � �   

Notice that it follows from the symmetry of the diagrammatic recoupling for-
mulas of Figure 36 that the square of the recoupling matrix F is equal to the
identity. That is,
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Furthermore, we know that
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so that
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√
5)/2.

Note that δ − 1/δ = 1. Thus
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and
T = (δ − 1/δ)2(δ2 − 2)− 2Θ/δ = (δ2 − 2)− 2(δ − 1)/δ
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Note that
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from which it follows immediately that
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5)/2.
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The Simple, yet Quantum Universal, 
Structure of the Fibonacci Model
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in Cob[0] the composition with the morphism 〈Θ|Ω〉 commutes with any other
morphism. In that way 〈Θ|Ω〉 behaves like a scalar in the cobordism category.
In general, an n + 1 manifold without boundary behaves as a scalar in Cob[n],
and if a manifold Mn+1 can be written as a union of two submanifolds Ln+1

and Rn+1 so that that an n-manifold W n is their common boundary:

Mn+1 = Ln+1 ∪ Rn+1

with
Ln+1 ∩ Rn+1 = W n

then, we can write

〈Mn+1〉 = 〈Ln+1 ∪ Rn+1〉 = 〈Ln+1|Rn+1〉,

and 〈Mn+1〉 will be a scalar (morphism that commutes with all other mor-
phisms) in the category Cob[n].

Identity 
|     >
<     |

<     | >

<    ||    >  =

U

Θ
Ω

Θ

Θ

Ω

Ω

 =
 =

U U  = |    >Ω <    |ΘΩΘ<    |    >

 = |    >Ω <    |ΘΩΘ<    |    >
 = ΩΘ<    |    >

U
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Θ
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Ω<     | Ω

Θ

Figure C4

Figure C4 illustrates the staightening of |Θ〉 and 〈Ω|, and the straightening
of a composition of these applied to |ψ〉, resulting in |φ〉. In the left-hand
part of the bottom of Figure C4 we illustrate the preparation of the tensor
product |Θ〉 ⊗ |ψ〉 followed by a successful measurement by 〈Ω| in the second
two tensor factors. The resulting single qubit state, as seen by straightening,
is |φ〉 = Θ ◦ Ω|ψ〉.

30

Temperley Lieb Category

The Key to Teleportation

QPQ   =  Q



Figure 4 - Algebraic Cancellation of Maxima and Minima

In Figure 4, we show the diagrammatic representative of the equation
ΣMaiM ib = δb

a.

In the simplest case cup and cap are represented by 2 × 2 matrices. The
topological condition implies that these matrices are inverses of each other.
Thus the problem of the existence of topological amplitudes is very easily
solved for simple closed curves in the plane.

Now view Figure 5.

a b

a b

M

M

a b

a b

N      = M Mai
ib

a

b

a

i

b

N      
a

b

a

b

Figure 5 - Matrix Composition

In this Figure we have summarized the essential diagrammatic mathe-
matics of this section. To a minimum is assigned a matrix Mab, and to a
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The upshot is that the state transmitted to Bob by this process is N |ψ〉
where N is the composition of the matrices corresponding to the preparation
state |Cup〉 and the measurement state 〈Cap|. This tells us that if we had
wanted Bob to receive directly a copy of |ψ〉, then we would need the matrix
for the preparation state |Cup〉 to be invertible. The reader should note
that the condition for the invertibility of the matrix associated with |Cup〉 is
exactly equivalent to the condition that this two-qubit state be entangled (not
a decomposable tensor product).

|Cup> = !  M    |i>|b>

<Cap| = !  M    <a| <i|
a,i

i,b

i,b

a,i

| " >

| " >#

|Cup>

<Cap|

N      = M Mai
ib

a
b

!
i

Figure 6 - Matrix Composition for Preparation and Measurement
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The Topology of Teleportation

4 Teleportation

The formalism we used at the end of the previous section to describe the
(absolute value) of the trace of a unitary matrix contains a hidden teleporta-
tion. It is the purpose of this section to bring forth that hidden connection
and to show how this structure illuminates the concept of teleportation and
its generalizations.

First consider the state

|δ〉 = Σα|α, α〉 ∈ H ⊗ H.

from the last section, where H = V ⊗n and V is a single-qubit space. One
can regard |δ〉 as a generalization of the EPR state |00〉 + |11〉.

Let |ψ〉 ∈ H be an arbitrary pure state in H. Let 〈M| be an abitrary
element of the dual of H ⊗ H and consider the possibility of a successful
measurement via 〈M| in the first two tensor factors of

|ψ〉|δ〉 ∈ H ⊗ H ⊗ H.

The resulting state from this measurement will be

〈M|[|ψ〉|δ〉].

If
〈M| = Σα,βMα,β〈α|〈β|,

then
〈M|[|ψ〉|δ〉] = Σα,βMα,β〈α|〈β|Σγ,λψγ |γ〉|λ〉|λ〉

= Σα,βMα,βΣγ,λψγ〈α|γ〉〈β|λ〉|λ〉

= Σα,βMα,βψα|β〉

= Σβ [ΣαMα,βψα]|β〉

= Σβ(Mψ)β |β〉

= M |ψ〉.

Thus we have proved the

12

|00> + |11>   <---->   1  0
                             0  1

|!>

"|!>

<"|

|#>

Figure 8 - Matrix Teleportation

In the case of success, and if the matrix M is unitary, Bob can apply
M−1 to the transmitted state and know that he now has the original state
|ψ〉 itself. The usual teleportation scenario, is actually based on a list of
unitary transformations sufficent to form a basis for the measurement states.
Lets recall how this comes about.

First take the case where M is a unitary 2 × 2 matrix and let σ1, σ2, σ3

be the three Pauli matrices

σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

We replace σ2 by iσ2 (for ease of calculation) and obtain the three matrices
X, Y , Z :

X =

[

0 1
1 0

]

, Y =

[

0 1
−1 0

]

, Z =

[

1 0
0 −1

]

Basis Lemma. Let M be a 2 × 2 matrix with complex entries. Let the
measuring state for M be the state

〈M| = M00|00〉 + M01|01〉 + M10|10〉 + M11|11〉.

14
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where the small diagrams represent parts of larger diagrams that are identical
except at the site indicated in the bracket. We take the convention that the
letter chi, χ, denotes a crossing where the curved line is crossing over the
straight segment. The barred letter denotes the switch of this crossing, where
the curved line is undercrossing the straight segment. See Figure 6 for a graphic
illustration of this relation, and an indication of the convention for choosing
the labels A and A−1 at a given crossing.

AA
-1A

-1A

A
-1A

< > = A < > + < >-1A

< > = A< > + < >-1A

Figure 6 - Bracket Smoothings

It is easy to see that Properties 2 and 3 define the calculation of the bracket
on arbitrary link diagrams. The choices of coefficients (A and A−1) and the
value of δ make the bracket invariant under the Reidemeister moves II and III.
Thus Property 1 is a consequence of the other two properties.

In computing the bracket, one finds the following behaviour under Reide-
meister move I:

< γ >= −A3 <$>

and
< γ >= −A−3 <$>

15
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equivalence relation generated by the second and third Reidemeister moves).
Here is an example. View Figure 7.1.

K U U'
Figure 7.1 – Trefoil and Two Relatives

Figure 7.1 shows a trefoil diagram K, an unknot diagram U and another
unknot diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 − A2) < U ′ >

and < U >= −A3 and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 − A2)A−6.

Hence
A−1 < K >= −A4 + A−8 − A−4.

Thus
< K >= −A5 − A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K.

Since the trefoil diagram K has writhe w(K) = 3, we have the normalized
polynomial

fK(A) = (−A3)−3 < K >= −A−9(−A5 − A−3 + A−7) = A−4 + A−12 − A−16.

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute, as we have done, fK(A) for the trefoil knot K and de-
termine that fK(A) is not equal to fK(A−1) = f−K(A). This shows that the
trefoil is not ambient isotopic to its mirror image, a fact that is much harder
to prove by classical methods.

17

�  � � �    

equivalence relation generated by the second and third Reidemeister moves).
Here is an example. View Figure 7.1.

K U U'
Figure 7.1 – Trefoil and Two Relatives

Figure 7.1 shows a trefoil diagram K, an unknot diagram U and another
unknot diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 − A2) < U ′ >

and < U >= −A3 and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 − A2)A−6.

Hence
A−1 < K >= −A4 + A−8 − A−4.

Thus
< K >= −A5 − A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K.

Since the trefoil diagram K has writhe w(K) = 3, we have the normalized
polynomial

fK(A) = (−A3)−3 < K >= −A−9(−A5 − A−3 + A−7) = A−4 + A−12 − A−16.

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute, as we have done, fK(A) for the trefoil knot K and de-
termine that fK(A) is not equal to fK(A−1) = f−K(A). This shows that the
trefoil is not ambient isotopic to its mirror image, a fact that is much harder
to prove by classical methods.

17

�  � � �    

equivalence relation generated by the second and third Reidemeister moves).
Here is an example. View Figure 7.1.

K U U'
Figure 7.1 – Trefoil and Two Relatives

Figure 7.1 shows a trefoil diagram K, an unknot diagram U and another
unknot diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 − A2) < U ′ >

and < U >= −A3 and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 − A2)A−6.

Hence
A−1 < K >= −A4 + A−8 − A−4.

Thus
< K >= −A5 − A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K.

Since the trefoil diagram K has writhe w(K) = 3, we have the normalized
polynomial

fK(A) = (−A3)−3 < K >= −A−9(−A5 − A−3 + A−7) = A−4 + A−12 − A−16.

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute, as we have done, fK(A) for the trefoil knot K and de-
termine that fK(A) is not equal to fK(A−1) = f−K(A). This shows that the
trefoil is not ambient isotopic to its mirror image, a fact that is much harder
to prove by classical methods.

17

�  � � �    

equivalence relation generated by the second and third Reidemeister moves).
Here is an example. View Figure 7.1.

K U U'
Figure 7.1 – Trefoil and Two Relatives

Figure 7.1 shows a trefoil diagram K, an unknot diagram U and another
unknot diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 − A2) < U ′ >

and < U >= −A3 and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 − A2)A−6.

Hence
A−1 < K >= −A4 + A−8 − A−4.

Thus
< K >= −A5 − A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K.

Since the trefoil diagram K has writhe w(K) = 3, we have the normalized
polynomial

fK(A) = (−A3)−3 < K >= −A−9(−A5 − A−3 + A−7) = A−4 + A−12 − A−16.

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute, as we have done, fK(A) for the trefoil knot K and de-
termine that fK(A) is not equal to fK(A−1) = f−K(A). This shows that the
trefoil is not ambient isotopic to its mirror image, a fact that is much harder
to prove by classical methods.

17

�  � � �    

equivalence relation generated by the second and third Reidemeister moves).
Here is an example. View Figure 7.1.

K U U'
Figure 7.1 – Trefoil and Two Relatives

Figure 7.1 shows a trefoil diagram K, an unknot diagram U and another
unknot diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 − A2) < U ′ >

and < U >= −A3 and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 − A2)A−6.

Hence
A−1 < K >= −A4 + A−8 − A−4.

Thus
< K >= −A5 − A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K.

Since the trefoil diagram K has writhe w(K) = 3, we have the normalized
polynomial

fK(A) = (−A3)−3 < K >= −A−9(−A5 − A−3 + A−7) = A−4 + A−12 − A−16.

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute, as we have done, fK(A) for the trefoil knot K and de-
termine that fK(A) is not equal to fK(A−1) = f−K(A). This shows that the
trefoil is not ambient isotopic to its mirror image, a fact that is much harder
to prove by classical methods.

17

�  � � � �     �

The State Summation. In order to obtain a closed formula for the bracket,
we now describe it as a state summation. Let K be any unoriented link
diagram. Define a state, S, of K to be a choice of smoothing for each crossing
of K. There are two choices for smoothing a given crossing, and thus there are
2N states of a diagram with N crossings. In a state we label each smoothing
with A or A−1 according to the left-right convention discussed in Property 3
(see Figure 6). The label is called a vertex weight of the state. There are
two evaluations related to a state. The first one is the product of the vertex
weights, denoted

< K|S > .

The second evaluation is the number of loops in the state S, denoted

||S||.

Define the state summation, < K >, by the formula

< K > =
∑

S

< K|S > δ||S||−1.

It follows from this definition that < K > satisfies the equations

< χ > = A <! > +A−1 <)(>,

< K "O > = δ < K >,

< O > = 1.

The first equation expresses the fact that the entire set of states of a given
diagram is the union, with respect to a given crossing, of those states with
an A-type smoothing and those with an A−1-type smoothing at that crossing.
The second and the third equation are clear from the formula defining the state
summation. Hence this state summation produces the bracket polynomial as
we have described it at the beginning of the section.

Remark. By a change of variables one obtains the original Jones polynomial,
VK(t), for oriented knots and links from the normalized bracket:

VK(t) = fK(t−
1
4 ).

Remark. The bracket polynomial provides a connection between knot theory
and physics, in that the state summation expression for it exhibits it as a
generalized partition function defined on the knot diagram. Partition functions
are ubiquitous in statistical mechanics, where they express the summation
over all states of the physical system of probability weighting functions for the

18
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as described in the previous section, and specializes to classical angular mo-
mentum recoupling theory in the limit of its basic variable. The construction
is based on the properties of the bracket polynomial (as already described in
Section 2). A complete description of this theory can be found in the book
“Temperley-Lieb Recoupling Theory and Invariants of Three-Manifolds” by
Kauffman and Lins [26].

The “q-deformed” spin networks that we construct here are based on the
bracket polynomial relation. View Figure 17 and Figure 18.

...

...

n strands

=
n

n
= (A    )-3 t(   )σ ~σ(1/{n}!) Σ

σ ε Sn

~
=

A A-1

= -A2 -2- A

= +

{n}! = Σ
σ ε Sn

(A    )t(   )σ-4

=
n

n

= 0

= d
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Figure 17 - Basic Projectors

= −1/δ

= −∆    /∆n n+1

n 1 1 n 1 1

n
1

=
2

δ ∆

1∆ =-1= 0 ∆ 0
∆ n+1 = ∆ n - n-1

Figure 18 - Two Strand Projector
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a b

c

i
j

k

a b

c
i + j = a
j + k = b
i + k = c

Figure 19 -Vertex

In Figure 17 we indicate how the basic projector (symmetrizer, Jones-Wenzl
projector)

is constructed on the basis of the bracket polynomial expansion. In this tech-
nology a symmetrizer is a sum of tangles on n strands (for a chosen integer n).
The tangles are made by summing over braid lifts of permutations in the sym-
metric group on n letters, as indicated in Figure 17. Each elementary braid is
then expanded by the bracket polynomial relation as indicated in Figure 17 so
that the resulting sum consists of flat tangles without any crossings (these can
be viewed as elements in the Temperley-Lieb algebra). The projectors have the
property that the concatenation of a projector with itself is just that projector,
and if you tie two lines on the top or the bottom of a projector together, then
the evaluation is zero. This general definition of projectors is very useful for
this theory. The two-strand projector is shown in Figure 18. Here the formula
for that projector is particularly simple. It is the sum of two parallel arcs and
two turn-around arcs (with coefficient −1/d, with d = −A2 − A−2 is the loop
value for the bracket polynomial. Figure 18 also shows the recursion formula
for the general projector. This recursion formula is due to Jones and Wenzl
and the projector in this form, developed as a sum in the Temperley–Lieb
algebra (see Section 5 of this paper), is usually known as the Jones–Wenzl
projector.
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state and a blank space for the unmarked state. Then one has two modes of
interaction of a box with itself:

1. Adjacency:

and

2. Nesting: .

With this convention we take the adjacency interaction to yield a single box,
and the nesting interaction to produce nothing:

=

=

We take the notational opportunity to denote nothing by an asterisk (*). The
syntatical rules for operating the asterisk are Thus the asterisk is a stand-in
for no mark at all and it can be erased or placed wherever it is convenient to
do so. Thus

= ∗.

We shall make a recoupling theory based on this particle, but it is worth
noting some of its purely combinatorial properties first. The arithmetic of
combining boxes (standing for acts of distinction) according to these rules
has been studied and formalized in [52] and correlated with Boolean algebra
and classical logic. Here within and next to are ways to refer to the two
sides delineated by the given distinction. From this point of view, there are
two modes of relationship (adjacency and nesting) that arise at once in the
presence of a distinction.

*

P P P P

P

Figure 25 - Fibonacci Particle Interaction
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* *
*

*

| 0 > | 1 >

111
0

1111
0dim(V         ) = 2

dim(V      ) = 1
P P P

P

P

P

P P P PP P

P

P

Figure 26 - Fibonacci Trees

From here on we shall denote the Fibonacii particle by the letter P. Thus
the two possible interactions of P with itself are as follows.

1. P, P −→ ∗

2. P, P −→ P

In Figure 25 we indicate in small tree diagrams the two possible interactions
of the particle P with itself. In the first interaction the particle vanishes,
producing the asterix. In the second interaction the particle a single copy of
P is produced. These are the two basic actions of a single distinction relative
to itself, and they constitute our formalism for this very elementary particle.
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=

Forbidden

Figure 29 - Fibonacci Particle as 2-Projector

Note that in Figure 29 we have adopted a single strand notation for the particle
interactions, with a solid strand corresponding to the marked particle, a dotted
strand (or nothing) corresponding to the unmarked particle. A dark vertex
indicates either an interaction point, or it may be used to indicate the the
single strand is shorthand for two ordinary strands. Remember that these are
all shorthand expressions for underlying bracket polynomial calculations.

In Figures 30, 31, 32, 33, 34 and 35 we have provided complete diagram-
matic calculations of all of the relevant small nets and evaluations that are
useful in the two-strand theory that is being used here. The reader may wish
to skip directly to Figure 36a and Figure 36b where we determine the form of
the recoupling coefficients for this theory. We will discuss the resulting algebra
below.
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properties (the operator is idempotent and a self-attached strand yields a zero
evaluation) and give diagrammatic proofs of these properties.

=

= = = 0

= 0

= =

=

− 1/δ

−(1/δ)δ− 1/δ

− 1/δ

Figure 28 - The 2-Projector

In Figure 29, we show the essence of the Temperley-Lieb recoupling model
for the Fibonacci particle. The Fibonaccie particle is, in this mathematical
model, identified with the 2-projector itself. As the reader can see from Figure
29, there are two basic interactions of the 2-projector with itself, one giving
a 2-projector, the other giving nothing. This is the pattern of self-iteraction
of the Fibonacci particle. There is a third possibility, depicted in Figure 29,
where two 2-projectors interact to produce a 4-projector. We could remark at
the outset, that the 4-projector will be zero if we choose the bracket polynomial
variable A = e3π/5. Rather than start there, we will assume that the 4-projector
is forbidden and deduce (below) that the theory has to be at this root of unity.
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For this specialization we see that the matrix F becomes

F =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 (−Θ2/∆2)∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 −1/∆

)

This version of F has square equal to the identity independent of the value of
Θ, so long as ∆2 = ∆ + 1.

The Final Adjustment. Our last version of F suffers from a lack of symme-
try. It is not a symmetric matrix, and hence not unitary. A final adjustment
of the model gives this desired symmetry. Consider the result of replacing each
trivalent vertex (with three 2-projector strands) by a multiple by a given quan-
tity α. Since the Θ has two vertices, it will be multiplied by α2. Similarly, the
tetradhedron T will be multiplied by α4. The ∆ and the δ will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after such an adjustment is made, becomes

(
1/∆ ∆/α2Θ

α2Θ/∆2 −1/∆

)

For symmetry we require

∆/(α2Θ) = α2Θ/∆2.

We take
α2 =

√
∆3/Θ.

With this choice of α we have

∆/(α2Θ) = ∆Θ/(Θ
√

∆3) = 1/
√

∆.

Hence the new symmetric F is given by the equation

F =

(
1/∆ 1/

√
∆

1/
√

∆ −1/∆

)

=

(
τ

√
τ√

τ −τ

)

where ∆ is the golden ratio and τ = 1/∆. This gives the Fibonacci model.
Using Figures 37 and 38, we have that the local braiding matrix for the model
is given by the formula below with A = e3πi/5.

R =

(
−A4 0

0 A8

)

=

(
e4πi/5 0

0 −e2πi/5

)

.

The simplest example of a braid group representation arising from this
theory is the representation of the three strand braid group generated by S1 =
R and S2 = FRF (Remember that F = F T = F−1.). The matrices S1 and S2

are both unitary, and they generate a dense subset of the unitary group U(2),
supplying the first part of the transformations needed for quantum computing.
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Figure 20 - Orthogonality of Trivalent Vertices

There is a recoupling formula in this theory in the form shown in Figure 21.
Here there are “6-j symbols”, recoupling coefficients that can be expressed, as
shown in Figure 23, in terms of tetrahedral graph evaluations and theta graph
evaluations. The tetrahedral graph is shown in Figure 22. One derives the
formulas for these coefficients directly from the orthogonality relations for the
trivalent vertices by closing the left hand side of the recoupling formula and
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Figure 20 - Orthogonality of Trivalent Vertices

There is a recoupling formula in this theory in the form shown in Figure 21.
Here there are “6-j symbols”, recoupling coefficients that can be expressed, as
shown in Figure 23, in terms of tetrahedral graph evaluations and theta graph
evaluations. The tetrahedral graph is shown in Figure 22. One derives the
formulas for these coefficients directly from the orthogonality relations for the
trivalent vertices by closing the left hand side of the recoupling formula and
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using orthogonality to evaluate the right hand side. This is illustrated in Figure
23.

{ }a b
c d

i
jΣ=

j

a
a

b
b

c
c dd

i j

Figure 21 - Recoupling Formula
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a =k [ ]Tet a b
c d

i
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Figure 22 - Tetrahedron Network
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Figure 22 - Tetrahedron Network
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Figure 23 - Tetrahedron Formula for Recoupling Coefficients

Finally, there is the braiding relation, as illustrated in Figure 24.
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a b
cλ

a ab b

c c

(a+b-c)/2 (a'+b'-c')/2

x' = x(x+2)

a b
cλ

=

= (-1) A

Figure 24 - LocalBraidingFormula

With the braiding relation in place, this q-deformed spin network theory
satisfies the pentagon, hexagon and braiding naturality identities needed for
a topological quantum field theory. All these identities follow naturally from
the basic underlying topological construction of the bracket polynomial. One
can apply the theory to many different situations.

6.1 Evaluations

In this section we discuss the structure of the evaluations for ∆n and the theta
and tetrahedral networks. We refer to [] for the details behind these formulas.
Recall that ∆n is the bracket evaluation of the closure of the n-strand projector,
as illustrated in Figure 20. For the bracket variable A, one finds that

∆n = (−1)n A2n+2 − A−2n−2

A2 − A−2
.

One sometimes writes the quantum integer

[n] = (−1)n−1∆n−1 =
A2n − A−2n

A2 − A−2
.

If
A = eiπ/2r
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Redefining the Vertex is the key to obtaining 
Unitary Recoupling Transformations.

    

= Θ(   ,   ,   )
∆

a

b a c

a

c
a
b

a
a

b c

a

= ∆    ∆    ∆    a b c

a

b c

a

=

a

Θ(   ,   ,   )a cb

a
b c
∆

∆ ∆

a

b c

a

Figure 24.2 - Modified Bubble Identiy

57

    

= Θ(   ,   ,   )
∆

a

b a c

a

c
a
b

a
a

b c

a

= ∆    ∆    ∆    a b c

a

b c

a

=

a

Θ(   ,   ,   )a cb

a
b c
∆

∆ ∆

a

b c

a

Figure 24.2 - Modified Bubble Identiy

57



    

a b
c d i jΣ=

j

a
a

b
b

c
c dd

i j

Figure 24.4 - Modified Recoupling Formula

a b
c d i j
= b

c d

a
i j

∆    ∆    ∆    ∆   a b c d

M[a,b,c,d]i j =
a b
c d i j

Figure 24.5 - Modified Recoupling Matrix

59

    

a b
c d i jΣ=

j

a
a

b
b

c
c dd

i j

Figure 24.4 - Modified Recoupling Formula

a b
c d i j
= b

c d

a
i j

∆    ∆    ∆    ∆   a b c d

M[a,b,c,d]i j =
a b
c d i j

Figure 24.5 - Modified Recoupling Matrix

59

  � � �   �  

a b
c d

=
b

c

d

a
ij

∆    ∆    ∆    ∆   a b c d

b

c d

a
i j

∆    ∆    ∆    ∆   a b c d

a b
c d

T -1==
Figure 24.6 - Modified Matrix Transpose

Theorem. In the Temperley-Lieb theory we obtain unitary (in fact real or-
thogonal) recoupling transformations when the bracket variable A has the form
A = eiπ/2r. Thus we obtain families of unitary representations of the Artin
braid group from the recoupling theory at these roots of unity.

Proof. The proof is given the discussion above. !

In Section ? we shall show explictly how this works in the case of the
Fibonacci model where A = e3iπ/5.

6.3 Spin Networks and Quantum Gravity

This section will be expanded to remarks about the original Penrose spin net-
work theory, and the Spin Geometry Theorem. In loop quantum gravity, via
the loop transform, one can represent states of quantum gravity via Wilson
loops (and integrals of Wilson loops over the underlying gauge field A), and
hence by the geometry of knots and links embedded in the three space. The
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The Recoupling Matrix is 
Real Unitary at Roots of 

Unity.
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Theorem.   Unitary Representations of the 
Braid Group come from Temperley Lieb 

Recoupling Theory at roots of unity.           

Sufficient to Produce Enough Unitary 
Transformations for Quantum 
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10 Quantum Computation of Colored Jones
Polynomials and the Witten-Reshetikhin-
Turaev Invariant

In this section we make some brief comments on the quantum computation
of colored Jones polynomials. This material will be expanded in a subsequent
publication.
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Jones Polynomial
“Trefoil":

Jones Polynomial
“Figure-Eight":

Jones Polynomial
“Borromean rings":

- + -A 3A 2A
2 13

+ -A A
8 4

+ -A A
-4-8

+ 4A
0

- + -A 3A 2A
-1-2-3

+ A
0

A is defined as a closed, non-self-intersecting curve
that is embedded in three dimensions.

knot

example: “construction” of the Trefoil knot:

make a
“knot”

fuse the
free ends

make it
“look nice”

start with a rope end up with a Trefoil

J. W. Alexander proved, that any knot can be represented
as a closed braid (polynomial time algorithm)

1 &1 &2
&1
-1 &2

-1

generators of the 3 strand braid group:

radie +%$

It is well known in knot theory, how to obtain the unitary matrix representation
of all generators of a given braid goup (see “Temperley-Lieb algebra” and “path
model representation”). The unitary matrices U and U , corresponding to the

generators and of the 3 strand braid group are shown on the left, where the

variable “ ” is related to the variable “ ” of the Jones polynomial by: .

The unitary matrix representations of and are given by U and U .

The knot or link that was expressed as a product of braid group generators can
therefore also be expressed as a product of the corresponding unitary matrices.

1 2

1 2& &
+

& &
A A

-1 - - -1 1 1

1 2 1 2

Instead of applying the unitary matrix we apply it’s controlled variant .
This matrix is especially suited for NMR quantum computers [4] and other
thermal state expectation value quantum computers: you only have to apply

to the NMR product operator and measure and in order to obtain
the trace of the original matrix .

U, cU

cU I I I
U

1x 1x 1y

.

Independent of the dimension of matrix you only need ONE extra qubit for the
implementation of as compared to the implementation of itself.

U
cU U

The measurement of I I1x 1yand can be accomplished in one single-scan experiment.

All knots and links can be expressed as a product of braid group generators (see
above). Hence the corresponding NMR pulse sequence can also be expressed as
a sequence of NMR pulse sequence blocks, where each block corresponds to the
controlled unitary matrix of one braid group generator.cU .

This modular approach allows for an easy optimization of the NMR pulse
sequences: only a small and limited number of pulse sequence blocks have to
be optimized. .

Comparison of experimental results, theoretical predictions, and simulated ex-
periments, where realisitic inperfections like relaxation, B field inhomogeneity,
and finite length of the pulses are included.

1

.

The Jones Polynomials can be reconstructed out of the NMR experiments by:

For each data point, four single-scan NMR experiments have been performed:
measurement of I I I I1x 1y 1x 1y, measurement of , reference for , and reference for .
If necessary each data point can also be obtained in one single-scan experiment
by measuring amplitude and phase in a referenced setting. .

V (A)=( A ) ( { } A [( A A ) 2])- +tr U - - -
3 ( ) ( ) 2 2 2- -w L I L

L

where: ( ) is the writhe of the knot or link
{ } is determined by the NMR experiments

( ) is the sum of exponents in the braid word
corresponding to the knot or link

w L L
tr U
I L

L

A A A+ -
-4 -12 -16( )

- -A A
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Three Strand and AJL Algorithms 2

The key idea behind the present quantum algorithms
to compute the Jones polynomial is to use unitary rep-
resentations of the braid group derived from Temperley-
Lieb algebra representations that take the form

ρ(σi) = AI + A−1Ui

where σi is a standard generator of the Artin braid group,
A is a complex number of unit length, and Ui is a sym-
metric real matrix that is part of a representation of
the Temperley-Lieb algebra. For more details about this
strategy and the background information about the Jones
polynomial, the bracket model for the Jones polynomial
and the Temperley-Lieb algebra the reader may wish to
consult [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13]. In the follow-
ing mathematical description, we have given a minimal
exposition of the structure of such representations.

Two Projectors and a Unitary Representation of the
Three Strand Braid Group

It is useful to think of the Temperley Lieb algebra as
generated by projections ei = Ui/δ so that e2

i = ei and
eiei±1ei = τei where τ = δ−2 and ei and ej commute for
|i− j| > 1.

With this in mind, consider elementary projectors
e = |A〉〈A| and f = |B〉〈B|. We assume that 〈A|A〉 =
〈B|B〉 = 1 so that e2 = e and f2 = f. Now note that

efe = |A〉〈A|B〉〈B|A〉〈A| = 〈A|B〉〈B|A〉e = τe

Thus

efe = τe

where τ = 〈A|B〉〈B|A〉.
This algebra of two projectors is the simplest instance

of a representation of the Temperley Lieb algebra. In
particular, this means that a representation of the three-
strand braid group is naturally associated with the alge-
bra of two projectors.

Quite specifically if we let 〈A| = (a, b) and |A〉 =
(a, b)T the transpose of this row vector, then

e = |A〉〈A| =
[

a2 ab
ab b2

]

is a standard projector matrix when a2 + b2 = 1. To
obtain a specific representation,

let e1 =
[

1 0
0 0

]
and e2 =

[
a2 ab
ab b2

]
.

It is easy to check that e1e2e1 = a2e1 and that e2e1e2 =
a2e2.

Note also that e1e2 =
[

a2 ab
0 0

]
and e2e1 =

[
a2 0
ab 0

]
.

We define

Ui = δei

for i = 1, 2 with a2 = δ−2. Then we have , for i = 1, 2

U2
i = δUi , U1U2U1 = U1, U2U1U2 = U2.

Thus we have a representation of the Temperley-Lieb al-
gebra on three strands. See [10] for a discussion of the
properties of the Temperley-Lieb algebra.

Note also that we have

trace(U1) = trace(U2) = δ,

while

trace(U1U2) = trace(U2U1) = 1

where trace denotes the usual matrix trace. We will use
these results on the traces of these matrices in Section .

Now we return to the matrix parameters: Since a2 +
b2 = 1 this means that δ−2 +b2 = 1 whence b2 = 1−δ−2.
Therefore b is real when δ2 is greater than or equal to 1.

We are interested in the case where δ = −A2−A−2 and
A is a unit complex number. Under these circumstances
the braid group representation

ρ(σi) = AI + A−1Ui

will be unitary whenever Ui is a real symmetric matrix.
Thus we will obtain a unitary representation of the three-
strand braid group B3 when δ2 ≥ 1.
For any A with d = −A2 − A−2 these formulas define a
representation of the braid group. With A = exp(iθ), we
have d = −2cos(2θ). We find a specific range of angles θ
in the following disjoint union of angular intervals

θ ∈ [0, π/6]&[π/3, 2π/3]&[5π/6, 7π/6]&[4π/3, 5π/3]&[11π/6, 2π]

that give unitary representations of the three-strand braid
group. Thus a specialization of a more general represen-
tion of the braid group gives rise to a continuous family
of unitary representations of the braid group.

A Quantum Algorithm for the Jones Polynomial on
Three Strand Braids

We gave above an example of a unitary representation
of the three-strand braid group.In fact, we can use this
representation to compute the Jones polynomial for clo-
sures of 3-braids, and therefore this representation pro-
vides a test case for the corresponding quantum compu-
tation. We now analyse this case by first making explicit
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in Cob[0] the composition with the morphism 〈Θ|Ω〉 commutes with any other
morphism. In that way 〈Θ|Ω〉 behaves like a scalar in the cobordism category.
In general, an n + 1 manifold without boundary behaves as a scalar in Cob[n],
and if a manifold Mn+1 can be written as a union of two submanifolds Ln+1

and Rn+1 so that that an n-manifold W n is their common boundary:

Mn+1 = Ln+1 ∪ Rn+1

with
Ln+1 ∩ Rn+1 = W n

then, we can write

〈Mn+1〉 = 〈Ln+1 ∪ Rn+1〉 = 〈Ln+1|Rn+1〉,

and 〈Mn+1〉 will be a scalar (morphism that commutes with all other mor-
phisms) in the category Cob[n].
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Figure C4

Figure C4 illustrates the staightening of |Θ〉 and 〈Ω|, and the straightening
of a composition of these applied to |ψ〉, resulting in |φ〉. In the left-hand
part of the bottom of Figure C4 we illustrate the preparation of the tensor
product |Θ〉 ⊗ |ψ〉 followed by a successful measurement by 〈Ω| in the second
two tensor factors. The resulting single qubit state, as seen by straightening,
is |φ〉 = Θ ◦ Ω|ψ〉.
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The Key to Teleportation

The Temperley-Lieb Category

QPQ=Q
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Figure 1. Reidemeister Moves

The bracket expansion of a knot or link diagram is invariant under Reidemeister moves II and III as shown
in Figure 1, and can be normalized to be invariant under the first Reidemeister moves by multiplication by an
appropriate power of −A3. Once normalized, it is a version of the Jones polynomial,4 differing from it by a
simple change of variable.

The key idea behind the present quantum algorithms to compute the Jones polynomial is to use unitary
representations of the braid group derived from Temperley-Lieb algebra representations that take the form

ρ(σi) = AI + A−1Ui

where σi is a standard generator of the Artin braid group, A is a complex number of unit length, and Ui is a
symmetric real matrix that is part of a representation of the Temperley-Lieb algebra. A diagrammatic version
of the Temperley-Lieb algebra puts the form of this representation in exact correspondence with the bracket

expansion, where the parallel arcs correspond to the identity element of the algebra and the arcs in the

form correspond to the generator Ui of the algebra when corresponds to the braid generator σi. For
more details about this strategy and the background information about the Jones polynomial, the bracket model
for the Jones polynomial and the Temperley-Lieb algebra the reader may wish to consult.1, 2, 4, 7–15, 18 In the
following sections, we have made use of such diagrammatic techniques and have included some material to make
the paper partly self-contained.

3. TWO PROJECTORS AND A UNITARY REPRESENTATION OF THE THREE
STRAND BRAID GROUP

It is useful to think of the Temperley Lieb algebra as generated by projections ei = Ui/δ so that e2
i = ei and

eiei±1ei = τei where τ = δ−2 and ei and ej commute for |i − j| > 1.

With this in mind, consider elementary projectors e = |A〉〈A| and f = |B〉〈B|. We assume that 〈A|A〉 =
〈B|B〉 = 1 so that e2 = e and f2 = f. Now note that

efe = |A〉〈A|B〉〈B|A〉〈A| = 〈A|B〉〈B|A〉e = τe

Thus
efe = τe

where τ = 〈A|B〉〈B|A〉.

Further author information: L.H.K. E-mail: kauffman@uic.edu, S.J.L. Jr.: E-mail: lomonaco@umbc.edu

Knot Theory has a 
Combinatorial Model 



Quantum Algorithms for the Jones Polynomial

Louis H. Kauffmana and Samuel J. Lomonaco Jr.b

a Department of Mathematics, Statistics and Computer Science (m/c 249), 851 South Morgan
Street, University of Illinois at Chicago, Chicago, Illinois 60607-7045, USA

b Department of Computer Science and Electrical Engineering, University of Maryland
Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

ABSTRACT

This paper gives a generalization of the AJL algorithm for quantum computation of the Jones polynomial to
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1. INTRODUCTION

In11 and in14 we gave a quantum algorithm for computing the Jones polynomial via a unitary representation
of the three-strand Artin braid group to the Temperley-Lieb algebra. In the bracket polynomial version of this
representation (see Section 2 of the present paper) the representations were unitary for certain continuous ranges
of choice of the polynomial variable A on the unit circle in the complex plane. In this paper we show that
these three-strand representations are a subset of unitary representations of the Artin braid group on arbitrary
numbers of strands and corresponding continuous ranges of the variable A on the unit circle. These more general
representations are in fact generalizations of the AJL representations1, 2 that were originally defined at certain
roots of unity in the unit circle.

The paper is organized as follows. In Section 2 we review the bracket polynomial model for the Jones
polynomial, and its relationship with representations of the Temperley-Leib algebra. In Section 3 we review the 3-
strand representation. In Section 4 we detail diagrammatically the construction of the generalized representation
and show how it is related to the 3-strand representation and to the AJL representation. In Section 5 we give
a diagrammatic proof of the requisite trace formula that is needed to make this representation into a quantum
algorithm for computing the Jones polynomial. Much remains to be explored in these directions. The present
paper was sparked by our work in16 on NMR quantum computing, and there will be a sequel to the present
paper17 that relates the present work to NMR research.

2. BRACKET AND TEMPERLEY LIEB ALGEBRA

The bracket polynomial7 model for the Jones polynomial4–6, 19 is usually described by the expansion

〈 〉 = A〈 〉 + A−1〈 〉 (1)

and we have

〈K ©〉 = (−A2 − A−2)〈K〉 (2)

〈 〉 = (−A3)〈 〉 (3)

〈 〉 = (−A−3)〈 〉 (4)

Bracket Model of Jones Polynomial



More about Temperley Lieb Representations
Here is the simplest method (but limited for unitarity).
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The key idea behind the present quantum algorithms
to compute the Jones polynomial is to use unitary rep-
resentations of the braid group derived from Temperley-
Lieb algebra representations that take the form

ρ(σi) = AI + A−1Ui

where σi is a standard generator of the Artin braid group,
A is a complex number of unit length, and Ui is a sym-
metric real matrix that is part of a representation of
the Temperley-Lieb algebra. For more details about this
strategy and the background information about the Jones
polynomial, the bracket model for the Jones polynomial
and the Temperley-Lieb algebra the reader may wish to
consult [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13]. In the follow-
ing mathematical description, we have given a minimal
exposition of the structure of such representations.

Two Projectors and a Unitary Representation of the
Three Strand Braid Group

It is useful to think of the Temperley Lieb algebra as
generated by projections ei = Ui/δ so that e2

i = ei and
eiei±1ei = τei where τ = δ−2 and ei and ej commute for
|i− j| > 1.

With this in mind, consider elementary projectors
e = |A〉〈A| and f = |B〉〈B|. We assume that 〈A|A〉 =
〈B|B〉 = 1 so that e2 = e and f2 = f. Now note that

efe = |A〉〈A|B〉〈B|A〉〈A| = 〈A|B〉〈B|A〉e = τe

Thus

efe = τe

where τ = 〈A|B〉〈B|A〉.
This algebra of two projectors is the simplest instance

of a representation of the Temperley Lieb algebra. In
particular, this means that a representation of the three-
strand braid group is naturally associated with the alge-
bra of two projectors.

Quite specifically if we let 〈A| = (a, b) and |A〉 =
(a, b)T the transpose of this row vector, then

e = |A〉〈A| =
[

a2 ab
ab b2

]

is a standard projector matrix when a2 + b2 = 1. To
obtain a specific representation,

let e1 =
[

1 0
0 0

]
and e2 =

[
a2 ab
ab b2

]
.

It is easy to check that e1e2e1 = a2e1 and that e2e1e2 =
a2e2.

Note also that e1e2 =
[

a2 ab
0 0

]
and e2e1 =

[
a2 0
ab 0

]
.

We define

Ui = δei

for i = 1, 2 with a2 = δ−2. Then we have , for i = 1, 2

U2
i = δUi , U1U2U1 = U1, U2U1U2 = U2.

Thus we have a representation of the Temperley-Lieb al-
gebra on three strands. See [10] for a discussion of the
properties of the Temperley-Lieb algebra.

Note also that we have

trace(U1) = trace(U2) = δ,

while

trace(U1U2) = trace(U2U1) = 1

where trace denotes the usual matrix trace. We will use
these results on the traces of these matrices in Section .

Now we return to the matrix parameters: Since a2 +
b2 = 1 this means that δ−2 +b2 = 1 whence b2 = 1−δ−2.
Therefore b is real when δ2 is greater than or equal to 1.

We are interested in the case where δ = −A2−A−2 and
A is a unit complex number. Under these circumstances
the braid group representation

ρ(σi) = AI + A−1Ui

will be unitary whenever Ui is a real symmetric matrix.
Thus we will obtain a unitary representation of the three-
strand braid group B3 when δ2 ≥ 1.
For any A with d = −A2 − A−2 these formulas define a
representation of the braid group. With A = exp(iθ), we
have d = −2cos(2θ). We find a specific range of angles θ
in the following disjoint union of angular intervals

θ ∈ [0, π/6]&[π/3, 2π/3]&[5π/6, 7π/6]&[4π/3, 5π/3]&[11π/6, 2π]

that give unitary representations of the three-strand braid
group. Thus a specialization of a more general represen-
tion of the braid group gives rise to a continuous family
of unitary representations of the braid group.

A Quantum Algorithm for the Jones Polynomial on
Three Strand Braids

We gave above an example of a unitary representation
of the three-strand braid group.In fact, we can use this
representation to compute the Jones polynomial for clo-
sures of 3-braids, and therefore this representation pro-
vides a test case for the corresponding quantum compu-
tation. We now analyse this case by first making explicit
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how the bracket polynomial is computed from this rep-
resentation. This unitary representation and its applica-
tion to a quantum algorithm first appeard in [3]. When
coupled with the Hadamard test, this algorithm gets val-
ues for the Jones polynomial in polynomial time in the
same way as the AJL algorithm [2]. It remains to be seen
how fast these algorithms are in principle when asked to
compute the polynomial itself rather than certain spe-
cializations of it.

First recall that the representation depends on two ma-
trices U1 and U2 with

U1 =
[

δ 0
0 0

]
and U2 =

[
δ−1

√
1− δ−2

√
1− δ−2 δ − δ−1

]
.

The representation is given on the two braid generators
by

ρ(σ1) = AI + A−1U1 (1)

and

ρ(σ2) = AI + A−1U2 (2)

for any A with δ = −A2 − A−2, and with A = exp(iθ),
then δ = −2cos(2θ). We get the specific range of angles
θ ∈ [0, π/6] $ [π/3, 2π/3] $ [5π/6, 7π/6] $ [4π/3, 5π/3] $
[11π/6, 2π] that give unitary representations of the three-
strand braid group.

Note that tr(U1) = tr(U2) = δ while tr(U1U2) =
tr(U2U1) = 1. If b is any braid, let I(b) denote the sum
of the exponents in the braid word that expresses b. For
b a three-strand braid, it follows that

ρ(b) = AI(b)I + τ(b)

where I is the 2× 2 identity matrix and τ(b) is a sum of
products in the Temperley Lieb algebra involving U1 and
U2. Since the Temperley Lieb algebra in this dimension
is generated by I,U1, U2, U1U2 and U2U1, it follows that

〈b〉 = AI(b)δ2 + tr(τ(b))

where b denotes the standard braid closure of b, and
the sharp brackets denote the bracket polynomial as de-
scribed in previous sections. From this we see at once
that

〈b〉 = tr(ρ(b)) + AI(b)(δ2 − 2).

It follows from this calculation that the question of com-
puting the bracket polynomial for the closure of the
three-strand braid b is mathematically equivalent to the
problem of computing the trace of the matrix ρ(b).

The matrix in question is a product of unitary matri-
ces, the quantum gates that we have associated with the
braids σ1 and σ2. The entries of the matrix ρ(b) are the
results of preparation and detection for the two dimen-
sional basis of qubits for our machine:

〈i|ρ(b)|j〉.

Given that the computer is prepared in |j〉, the proba-
bility of observing it in state |i〉 is equal to |〈i|ρ(b)|j〉|2.
Thus we can, by running the quantum computation re-
peatedly, estimate the absolute squares of the entries of
the matrix ρ(b). This will not yield the complex phase in-
formation that is needed for either the trace of the matrix
or the absolute value of that trace.

However, we do know how to write a quantum al-
gorithm to compute the trace of a unitary matrix (via
the Hadamard test). Since ρ(b) is unitary, we can use
this approach to approximate the trace of ρ(b). This
yields a quantum algorithim for the Jones polynomial
for three-stand braids (evaluated at points A such that
the representation is unitary). Knowing tr(ρ(b)) from
the quantum computation, we then have the formula for
the bracket, as above,

〈b〉 = trace(ρ(b)) + AI(b)(δ2 − 2).

Then the normalized polynomial, invariant under all
three Reidemeister moves is given by

f(b) = (−A3)−I(b)〈b〉.

Finally the Jones polynomial in its usual form is given
by the formula

V (b)(t) = f(b)(t−1/4).

Thus we conclude that our quantum computer can ap-
proximate values of the Jones polynomial.

ON THE RELATIONSHIP WITH THE AJL
ALGORITHM

Here is how the KL (Kauffman-Lomonaco) algorithm
described in the previous section becomes a special case
of a generalization of the AJL algorithm: Here we use
notation from the AJL paper. In that paper, the genera-
tors Ui (in our previous notation) for the Temperley-Lieb
algebra, are denoted by Ei.

Let Lk = λk = sin(kθ). For the time being θ is an
arbitrary angle. Let A = iexp(iθ/2) so that d = −A2 −
A−2 = 2cos(θ).

We need to choose θ so that sin(kθ) is non-negative
for the range of k’s we use (these depend on the choice of
line graph as in AJL). And we insist that sin(kθ) is non-
zero except for k = 0. Then it follows from trigonometry
that (Lk−1 + Lk+1)/Lk = d for all k.

Recall that the representation of the Temperley-Lieb
algebra in AJL is given in terms of Ei such that E2

i = dEi

and the Ei satisfy the Temperley-Lieb relations. Each
Ei acts non-trivially at the i and i + 1 places in the
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bit-string basis for the space and each Ei is based upon
La−1, La, La+1 where a = z(i) is the endpoint of a walk
described by the bitstring using only first (i − 1) bits.
Bitstrings represent walks on a line graph. Thus 1011
represents the walk Right, Left, Right, Right ending at
node number 3 in

1−−−−− 2−−−−− 3−−−−− 4.

For p = 1011, z(1) = 1, z(2) = 2, z(3) = 1, z(4) =
1, z(5) = 3.

More precisely, if we let

|v(a)〉 = [
√

La−1/La,
√

La+1/La]T

(i.e. this is a column vector. T denotes transpose.) Then

Ei = |v(z(i))〉〈v(z(i))|.

Here it is understood that this refers to the action on the
bitstrings

−−−−−−−−−− 01−−−−−−−−−−

and

−−−−−−−−−− 10−−−−−−−−−−

obtained from the given bitstring by modifying the i and
i+1 places. The basis order is 01 before 10. Conceptually,
this is a useful description, but it also helps to have the
specific formulas laid out.

Now look at the special case of a line graph with three
nodes and two edges:

1−−−−− 2−−−−− 3.

The only admissible binary sequences are |110〉 and |101〉,
so the space corresponding to this graph is two dimen-
sional, and it is acted on by E1 with z(1) = 1 in both
cases (the empty walk terminates in the first node) and
E2 with z(2) = 2 for |110〉 and z(2) = 2 for |101〉. Then
we have

E1|110〉 = 0, E1|101〉 = d|101〉,

E2|xyz〉 = |v〉〈v|xyz〉

(xyz = 101 or 110) where v = (
√

1/d,
√

d− 1/d)T .

If one compares this two dimensional representation
of the three strand Temperley - Lieb algebra and the
corresponding braid group representation, with the rep-
resentation Kauffman and Lomonaco use in their paper,
it is clear that it is the same (up to the convenient re-
placement of A = exp(iθ) by A = iexp(iθ/2)). The trace
formula of AJL is a variation of the trace formula that
Kauffman and Lomonaco use. Note that the AJL algo-
rithm as formulated in [2] does not use the continuous
range of angles that are available to the KL algorithm.
In the sequel to this paper and in a separate paper on
the mathematics, we shall show how the entire AJL al-
gorithm generalizes to continuous angular ranges.

THEORY OF AN NMR SPECTROMETER USED
AS A QUANTUM COMPUTER

By convention, a quantum computer as conceived in
theory is assumed to yield an outcome associated with
a quantum measurement of some (possibly mixed) quan-
tum state. In contrast, NMR machines implement a re-
stricted version of an Expectation-Value Quantum Com-
puter (EVQC), which in place of an outcome yields, to
some finite precision, the expectation value for a mea-
surement of a (again, possibly mixed) quantum state [6].
Reflecting facts of NMR spectrometers, an NMR Quan-
tum Computer (NMRQC) implements only the special
measurement operators discussed in [14], and these mea-
surement operators all have zero trace.

Here are the details. For a Hermitian measurement
operator M applied to a density matrix ρ, the EVQC of
precision ε yields a value x such that

|x− Tr(Mρ)| ≤ εΛ(M), (3)

where Λ(M) is the difference between the minimum and
the maximum eigenvalue of the measurement operator
M , which is just the possible range to the trace as ρ varies
over all possible density matrices. (The factor Λ(M)
makes limitations of resolution immune to the mere an-
alytic trick of multiplying the measurement operator by
a constant.)

The measurement operators of main interest for the
algorithm by which we estimate the trace of a unitary
operator are I1x and I1y, shortly to be defined.

Thermal Equilibrium and initial state preparation

To first order, the initial thermal state density operator
of an ensemble (very large number) of quantum systems
with n + 1 qubits each [15] is given by

ρth ≈
1
N

(1−
n+1∑

l=1

αlIlz) (4)

with αl = h̄ωl
kT ,

Ilz =
1
2
1⊗ . . .⊗ 1⊗ σz ⊗ 1⊗ . . .⊗ 1,

(where the Pauli matrix σz appears as the lth term in the
product), ωl is the resonance frequency of qubit l, k is
Boltzmann’s constant, T is temperature and N = 2n+1.

The initial density operator required for our algorithm
is given by

ρ0 =
1
N

(1− α1I1z) (5)

which can be prepared from ρth by a variety of methods
[16].
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AJL is based on the following projector formalism.
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E  (p)  i

Figure 3: Temperely Lieb Representation
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Figure 4: Temperely Lieb Representation
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There are continous angular ranges to choose 
from.
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This is the needed Markov trace condition for the link 
invariant.
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This completes a description of 
a generalization of the AJL algorithm
that we are using for experiments
with NMR quantum computation.

Will topology play a key role
in the future of quantum computation?

Time will tell.

And this concludes our sketch of
this corner of 

topological quantum information theory.




